1- Abd El-Kawy, O. R., Rød, J. K., Ismail, H. A., & Suliman, A. S. (2011). Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data. Applied geography, 31(2), 483-494.
2- Albalawi, E. K., & Kumar, L. (2013). Using remote sensing technology to detect, model and map desertification: a review. J Food Agric Environ, 11, 791-797.
3- Al-Ahmadi, M. E. (2009). Hydrogeology of the Saq Aquifer Northwest of Tabuk, Northern Saudi Arabia. Journal of King Abdulaziz University: Earth Sciences, 20, 51-66.
4- Al-Bilbisi, H., and Makhamreh, Z. 2010. A comparison of pixel-based and object-based classification approaches in arid and semi-arid areas of Dead Sea region using Landsat imagery, DIRASAT: Human and Social Sciences, 37 (3): 649-659.
5- Al-Shayaa, M. S., Baig, M. B., & Straquadine, G. S. (2012). Agricultural extension in the Kingdom of Saudi Arabia: Difficult present and demanding future. J. Anim. Plant Sci, 22(1), 239-246.
6- Alqurashi, A. F., & Kumar, L. (2014). Land Use and Land Cover Change Detection in the Saudi Arabian Desert Cities of Makkah and Al-Taif Using Satellite Data. Advances in Remote Sensing, 3(03), 106.
7- Anderson, J. R. (1976). A land use and land cover classification system for use with remote sensor data (Vol. 964): US Government Printing Office.
8- Bhaskaran, S., Paramananda, S., & Ramnarayan, M. (2010). Per-pixel and object-oriented classification methods for mapping urban features using Ikonos satellite data. Applied geography, 30(4), 650-665.
9- Campbell, J. B. (2002). Introduction to Remote Sensing. New York: The Guilford Press; 3 edition.
10- Campbell, & Wynne. (2011). Introduction to remote sensing: Guilford Press.
11- Canty, M. J. (2014). Image analysis, classification and change detection in remote sensing: with algorithms for ENVI/IDL and Python: CRC Press.
12- Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35-46.
13- Congalton, R.G. and Green, K. (2009) Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. 2nd Edition, Lewis Publishers, Boca Raton.
14- Chavez, P.S., Jr. 1996. Image-based atmospheric corrections–revisited and improved. Photogrammetric Engineering and Remote Sensing 62(9): pp.1025-1036.
15- Foody, G.M. and Mathur, A. (2004) A Relative Evaluation of Multiclass Image Classification by Support Vector Machines. IEEE Transactions on Geoscience and Remote Sensing, 42, 1335-1343. http://dx.doi.org/10.1109/TGRS.2004.82725
16- Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185-201.
17- Galletti, C. S., & Myint, S. W. (2014). Land-use mapping in a mixed urban-agricultural arid landscape using object-based image analysis: A case study from Maricopa, Arizona. Remote Sensing, 6(7), 6089-6110.
18- Goodin, D. G., Anibas, K. L., & Bezymennyi, M. (2015). Mapping land cover and land use from object-based classification: an example from a complex agricultural landscape. International Journal of Remote Sensing, 36(18), 4702-4723.
19- Kraemer, R., Prishchepov, A. V., Müller, D., Kuemmerle, T., Radeloff, V. C., Dara, A., & Frühauf, M. (2015). Long-term agricultural land-cover change and potential for cropland expansion in the former Virgin Lands area of Kazakhstan. Environmental Research Letters, 10(5), 054012.
20- Jensen. (2004). Digital change detection. Introductory digital image processing: A remote sensing perspective, 467-494
21- Kux, H., & Souza, U. D. (2012). Object-based image analysis of WORLDVIEW-2 satellite data for the classification of mangrove areas in the city of São Luís, Maranhão State, Brazil. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 1, 95-100.
22- Laliberte, A. S., Rango, A., Havstad, K. M., Paris, J. F., Beck, R. F., McNeely, R., & Gonzalez, A. L. (2004). Object-oriented image analysis for mapping shrub encroachment from 1937 to 2003 in southern New Mexico. Remote sensing of Environment, 93(1-2), 198-210. ISO 690
23- Lu, D., Hetrick, S., Moran, E., & Li, G. (2010). Detection of urban expansion in an urban-rural landscape with multitemporal QuickBird images. Journal of applied remote sensing, 4(041880), 041880.
24- Li, M., Zang, S., Zhang, B., Li, S., & Wu, C. (2014). A review of remote sensing image classification techniques: The role of spatial-contextual information. European Journal of Remote Sensing, 47, 389-411.
25- Lillesand T. M. and Kiefer R. W., “Remote Sensing and Image Interpretation,” John Willey and Sons, New York, 1999.
26- Lillesand, T., Kiefer, R. W., & Chipman, J. (2014). Remote sensing and image interpretation. New York: John Wiley & Sons.
27- Löw, F., Fliemann, E., Abdullaev, I., Conrad, C., & Lamers, J. P. A. (2015). Mapping abandoned agricultural land in Kyzyl-Orda, Kazakhstan using satellite remote sensing. Applied geography, 62, 377-390.
28- Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing, 25(12), 2365-2401.
29- Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823-870.
30- Mountrakis, G., Im, J. and Ogole, C. (2011) Support Vector Machines in Remote Sensing: A Review. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 247-259. http://dx.doi.org/10.1016/j.isprsjprs.2010.11.001
31- Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S., & Weng, Q. (2011). Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sensing of Environment, 115(5), 1145-1161.
32- Ram, B., & Kolarkar, A. (1993). Remote sensing application in monitoring land-use changes in arid Rajasthan. International Journal of Remote Sensing, 14(17), 3191-3200.
33- Rastgoo, M., & Hasanfard, A. (2021). Desertification in Agricultural Lands: Approaches to Mitigation. In Deserts and Desertification. IntechOpen.
34- Rouse Jr, J. W., Haas, R. H., Deering, D. W., Schell, J. A., & Harlan, J. C. (1974). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation (No. E75-10354).
35- Shalaby, A. and Tateishi, R. (2007) Remote Sensing and GIS for Mapping and Monitoring LC and Land-Use Changes in the Northwestern Coastal Zone of Egypt. Applied Geography, 27, 28-41.
37- Turner, W., Rondinini, C., Pettorelli, N., Mora, B., Leidner, A. K., Szantoi, Z., Herold, M. (2015). Free and open-access satellite data are key to biodiversity conservation. Biological Conservation, 182, 173-176.
38- USGS. (2015). Landsat data. Accessed December 2015 from https://earthexplorer.usgs.gov/
39- Vapnik, V. N. (1999). An overview of statistical learning theory. Neural Networks, IEEE Transactions on, 10(5), 988-999.
40- Vijayan, L., & AlTalhi, F. A. (2015). Significance of Meteorological Parameters in the Implementation of Agriculture Engineering Practices in and Around Tabuk Region, KSA. International Journal of Applied Science and Technology, 3(5), 53-65.
41- Walter, V. (2004). Object-based classification of remote sensing data for change detection. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3), 225-238.
42- Wang, X., Liu, S., Du, P., Liang, H., Xia, J., & Li, Y. (2018). Object-based change detection in urban areas from high spatial resolution images based on multiple features and ensemble learning. Remote Sensing, 10(2), 276.
43- Whiteside T.G., Boggs G.S. and Maier S.W . (2011) Comparing object- based and pixel- based classifications for mapping savannas, International Journal of Applied Earth Observation and Geoinformation, 13(6), 884 – 893.
44- Zhang, Z., Li, N., Wang, X., Liu, F., & Yang, L. (2016). A comparative study of urban expansion in Beijing, Tianjin and Tangshan from the 1970s to 2013. Remote Sensing, 8(6), 496.
45- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171.
46- Zheng, B., Myint, S. W., Thenkabail, P. S., & Aggarwal, R. M. (2015). A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. International Journal of Applied Earth Observation and Geoinformation, 34, 103-112.