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Abstract:
This study introduces a straightforward 

framework for analyzing climate data related 
to the minimum and maximum temperatures 
of countries in Central Asia (Kazakhstan, 
Kyrgyzstan, Tadjikistan, Turkmenistan, and 
Uzbekistan), considering annual temperature 
averages over a long period of time ranging 
from the early 1900's to the beginning of the 
year 2000. The data analysis used standard 
existing multiple linear regression models 
under a hierarchical Bayesian approach, 
assuming as covariates latitude and longitude 
of the climate stations, temporal factors (linear, 
quadratic, and cubic effects of years), and 
altitude of the climate station. The findings 
yielded highly accurate results in identifying 
significant factors influencing climate change, 
such as time (year), altitude, and spatial factors, 
as well as in predicting average temperatures 
in future years. Furthermore, the obtained 
results align with numerous other studies in 
the literature, indicating that all regions of the 
world are already experiencing climate change. 
In particular, we observed that annual average 
minimum temperatures in Central Asia are 
increasing in the five countries assumed in the 
study at the end of the follow-up period (close to 
the year 2003). We also observed similar results 
for the annual average maximum temperatures.

Keywords: climate data, multiple linear 
regression models, Bayesian inference, MCMC 
métodos, minimum and maximum yearly 
average temperatures

Introduction
Recent decades have witnessed numerous 

effects of climate change on the environment, 
including the shrinkage of glaciers, the melting 
of ice from rivers and lakes, the early blossoming 
of trees, the rapid rise in sea level, and intense 
heat waves, among others, underscoring the 
significance of studying climate change. For 
example, the average rainfall in the United States 
of America has increased since 1900, but some 
areas of the country have seen increases greater 
than the national average, and some areas have 
Throughout this century, we anticipate more 
winter and spring precipitation in the northern 
United States and less in the southwest.
The 2021 project uses the CMIP6 phase 6 data 

to examine changes in extreme temperature 
and precipitation events for the mid-century 
(2036–2065) and late-century (2070–2099) 
periods, comparing them to the reference period 
(1985–2014). It achieves this by examining 
various indices and socioeconomic scenarios 
around the world. The projected values show 
an increase in the intensity and frequency of 
hot temperatures and precipitation extremes. 
Valipour (2021) highlights the importance of 
climate data in determining global surface 
temperature. To do this, we look at how the 
mean surface temperature (ST), wind speed 
(WS), and albedo (AL) have changed over the 
last 20 years (2000–2019) from the Global Land 
Data Assimilation System (GLDAS) around the 
world and compare them to data from 1961–
1990 to see if these changes have an effect on 
ST, WS, and AL.
As declared by the UN Intergovernmental 
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Panel on Climate Change (IPCC) in 2013, 
climate change is real, and human activities 
are the main cause of this change. The UN 
prepared the fifth assessment report, which 
provides information on the sea level rise in 
recent decades and cumulative estimates of 
CO2 emissions since pre-industrial time. The 
report found that:
From 1880 to 2012, the average global 

temperature increased by 0.85 °C.
The oceans warmed, the amounts of snow 

and ice decreased, and the sea level has risen. 
From 1901 to 2010, the global average sea level 
rose by 19 cm as the oceans expanded due to 
warming and melting ice.
Given the current concentrations and ongoing 

emissions of greenhouse gases, it is likely that 
by the end of this century, the global mean 
temperature will continue to rise above the 
pre-industrial level. We predict an average sea 
level rise of 24–30 cm by 2065 and 40–63 cm 
by 2100, compared to the reference period of 
1986–2005. Even if we stop emissions, most 
aspects of climate change will persist for many 
centuries.
Since this topic is of significant interest, 

the literature presents a tremendous number 
of papers and reports from climate agencies 
related to climate change and its implications. 
Arnell (11999) described the effects of climate 
change by 2050 on hydrological regimes 
on a continental scale in Europe. Iglesias 
(2012) presented a study that consistently 
demonstrated the impact of climate change on 
arable agriculture in Europe. Guillemain (2013) 
investigated the primary impacts of climate 
change on birds, specifically ducks, in Europe. 
(Aguilar et al., 2005) conducted an analysis 
of climate change indices in Central America 
from 1961 to 2003. Their findings indicated 
a general warming trend in the region, which 

could potentially contribute to atypical natural 
events. ents.       Jones and Thornton (2003) 
conducted a study that showed that the impacts 
of climate change on agriculture, such as maize 
production, can significantly increase the 
development challenges to ensure food security 
and reduce poverty in Africa and Latin America 
until 2055. Campbell et al. (2014) demonstrated 
that the effects of climate change in Oceania led 
to a rise in sea level, an increase in the frequency 
and severity of floods and droughts, an increase 
in the intensity of tropical cyclones, and a shift 
in the distribution of disease vectors. In 2021, 
Somanathan presented an association between 
economic production and the hottest years, 
estimating that workers in India experience 
a reduction in productivity during periods of 
temperature increase, thereby establishing a 
relationship between production and climate 
changes.
Arnell (1999), Bonan (2008), Costello et al. 

(2009), Hawkins (2017), Kabir et al. (2016), 
Kaczan and Orgill-Meyer (2020), Levermann 
et al. (2013), Li and Fang (2016), Mathews 
(2018), Poloczanska et al. (2013), Rahmstorf et 
al. (2007), Serdeczny et al. (2017), Springmann 
et al. (2016), Turner et al. (2020), Zhao et al. 
(2017).
Climate change particularly impacts Central 

Asia, which includes Kazakhstan, Kyrgyzstan, 
Tajikistan, Turkmenistan, and Uzbekistan. 
Perelet et al. (2007) noted that global climate 
change poses serious threats to the environment, 
ecological, and socioeconomic systems of 
the Central Asia region. This region has 
already experienced a decline in agricultural 
production, and the quantity and quality of 
water resources are at risk due to the severe 
effects of climate change. We analyzed the 
maximum and minimum temperatures on an 
annual and seasonal basis, gathering data from 
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108 climate stations between 1981 and 2015.
Achcar and de Oliveira (2022) used non-

homogeneous Poisson processes (NHPP) to 
look at Kazakhstan's rainfall data from 1879 to 
2002. They discovered that the average rainfall 
was higher 11 years before the estimated change 
point (year 43, which is 1921) and 46 years after 
that. This could be considered an indication 
that the average rainfall has increased since 
1921. However, assuming the temperature data 
from Kazakhstan (1915 to 2003), they found 
that there were 13 years before the estimated 
change point (year 33, which corresponds to the 
year 1948) and 30 years after, with maximum 
temperature averages above the overall average. 
This suggests that the average maximum 
temperature has been increasing since 1948.
According to Feng et al. (2018), there was an 

increase in all extreme temperature values on 
an annual scale, with the maximum temperature 
increasing faster than the minimum temperature. 
Different statistical models reveal an increase 
of 0.37°C/decade in temperature projections 
for the period 2021-2060 compared to the 
period 1965-2004, with higher latitudes and 
mountainous areas experiencing accelerated 
warming (Luo et al., 2019). Some research that 
looked at changes in average temperature and 
rainfall for the years 2011–2040, 2041–2070, 
and 2071-2100 in Central Asia used climate 
models to show that the rise in temperature 
and fall in rainfall compared to 1971–2000 can 
impact the social and economic systems of this 
area, which is mostly dry or semi-dry (Ozturk 
et al., 2017).
The goal of this work is to present a multiple 

linear regression model that uses a Bayesian 
hierarchical framework. This model can be 
very useful for getting very accurate fits to see 
if factors like longitudes and latitudes have a 
big impact on the average highest and lowest 

temperatures that happen each year. Some 
studies have looked at the relationship between 
the highest and lowest temperatures and the 
effects of global warming. These studies 
usually use simple linear regression models and 
the classic approach of looking for linear trends 
over time (Brown, 2008; Donat et al., 2013; 
Stocker, 2014). In particular, Feng et al. (2018) 
introduced a study that also examined maximum 
and minimum temperatures, demonstrating the 
increasing linear climate trends and their spatial 
and temporal effects in the Central Asia region. 
Other studies considering extreme temperatures 
in other parts of the world were also introduced 
in the literature (Alexander et al., 2006; Donat 
et al., 2013; Stocker, 2014; Tao et al., 2014; 
Cassano et al., 2015; Fang et al., 2015; Horton 
et al., 2015; Zhong et al., 2017), but as pointed 
out by Feng et al. (2018), few studies have been 
performed in arid and semi-arid regions (Klein 
et al., 2006; Wang et al., 2013; Tonkaz et al., 
2007) as considered in the present work.
We want to make a multiple linear regression 

model that looks at the average lowest and 
highest temperatures over the course of a 
year, includes a latent factor (a variable that 
can't be measured), and includes a number of 
independent variables, such as time, latitude, 
longitude, and elevation of the climate stations, 
along with their linear, quadratic, and cubic 
effects. The proposed approach does not require 
numerical methods that strongly depend on 
precise initial values to reach convergence. With 
the suggested framework and common MCMC 
(Markov Chain Monte Carlo) techniques like 
Gibbs Sampling, Metropolis-Hastings, and 
Metropolis-within-Gibbs (MwG), it is possible 
to use a fully Bayesian approach to guess and 
come to the right conclusions. We chose to use 
the MwG algorithm (Gilks et al., 1995) in this 
paper to get pseudo-random samples from the 
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roughly emphasized posterior distribution of 
model parameters. In summary, this study aims 
to achieve the following primary objectives:
We aim to present a statistical examination 

of climate data in Central Asian countries 
such as Kazakhstan, Kyrgyzstan, Tadjikistan, 
Turkmenistan, and Uzbekistan, spanning from 
the early 1900s to the start of 2000. We focus 
on the annual average minimum and maximum 
temperatures, taking into account a latent 
factor (an unobserved variable) and certain 
independent variables influenced by time, 
latitude, longitude, and elevation of the climate 
stations.
We used multiple linear regression models 

with a hierarchical Bayesian approach to look 
at the data. We accounted for the latitude and 
longitude of the climate stations, temporal 
factors (linear, quadratic, and cubic effects of 
years), and altitude as covariates.
We want to draw accurate conclusions and 

predictions using standard MCMC (Markov 
Chain Monte Carlo) methods, assuming prior 
distributions for the parameters of the proposed 
models that are not very informative. This is 
part of a fully Bayesian approach.
This paper is organized as follows. In Section 

2, we present the dataset and the fundamental 
concepts regarding formulation and estimation 

of the proposed model. In Section 3, we analyze 
and discuss the results obtained using the 
proposed methodology for modeling the climate 
data in Central Asia. We also present model 
comparisons between linear and polynomial 
approximations. Section 4 addresses general 
comments and concluding remarks.

Materials and Methods
2.1 Climate Data
The study considers a climate data set 

introduced by Williams and Konovalov (2008) 
related to the annual average minimum and 
maximum temperature rather than the usual 
annual average temperatures in many studies 
introduced in the literature for five countries in 
Central Asia: 211 Kazakhstan, 213 Kyrgyzstan, 
227- Tajikistan, 229 Turkmenistan, and 231 
Uzbekistan (Figure1). Although this data set 
has some limitations since the time series 
end in the year 2003, it is possible to verify 
the behavior of the climate series for a long 
period. Analysis of the extreme minimum and 
maximum temperature means can give a more 
realistic view of climate change.

Figure 1: Map of Central Asia.
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The original data set consists of monthly 
average temperatures (minimum and maximum) 
reported in different climate stations for many 
years. We only took into account the annual 
averages of complete data because there were 
a large number of missing observations in the 
data set, particularly in the early years of the 
follow-up periods. This refers to the annual 
averages of the maximum and minimum 
temperatures for the years when there was data 
available for a full year. It is important to note 
that the average monthly temperatures in each 
of the four seasons (summer, winter, spring, 
and autumn) exhibit seasonality. Therefore, 
calculating annual average temperatures based 
on only a few months of the year rather than the 
complete 12-month data for each year would be 
meaningless.
The annual minimum temperature data set 

consists of n = 3467 annual averages (average 
of the 12-month averages in each year ranging 
from the year 1883 to the year 2003) reported in 
different climate stations (Appendix 1) for each 
country (Figure 2). The original data set has 
deleted some observations due to missing data, 
and each sample observation represents the 
average of the monthly minimum temperature 
averages for each year. On the other hand, 
various climate stations (Appendix 1) report the 
annual average maximum temperatures, which 

comprise n = 3959 annual averages (the mean 
of the 12-month means in each year from 1894 
to 2003) for each country (Figure 2). Moreover, 
in Appendix 2 at the end of the manuscript, we 
have the latitude, longitude, altitude, and study 
period for each station.

2.2 Statistical Analysis
In recent years, the literature has extensively 

explored the topic of climate change. However, 
new studies using various databases and 
statistical models can provide valuable insights 
and aid public authorities in making sometimes 
drastic decisions to mitigate the impact of 
climate change on future generations. The 
latitude and longitude factors provide precise 
information about how neighboring regions 
influence the temperature measurements 
at each location. This information can 
serve as a viable substitute for the existing 
Bayesian spatial-temporal models, such as 
the conditional autoregressive (CAR) and the 
simultaneously autoregressive (SAR) models 
introduced in the literature (Besag, 1974; Wall, 
2004; Cressie and Chan, 1989). Under this 
model approach, Tawn et al. (2018) considered 
applications with environmental extreme 
events. On the other hand, Zarei et al. (2021) 
assumed multiple Bayesian linear regression 
models to investigate the impact of minimum 

Figure 2: Annual average minimum and maximum temperatures in Central Asia 
(Kazakhstan, Kyrgyzstan, Tadjikistan, Turkmenistan and Uzbekistan).
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and maximum temperatures on plantations in 
Iran during the period 1968–2017. In another 
paper, Singh et al. (2020) assumed a Bayesian 
approach to implement a simulation study for 
the association between climate and the impact 
of rice productivity in the state of Louisiana, 
USA, from 1960 to 2015.
The model also includes a non-observed 

latent factor, representing the effect of other 
covariates not included in the model, that could 
affect the variability of the response variable 
(Mcculloch and Searle, 2004; Laird and 
Ware, 1982; Verbeke, 1997). Assuming linear 
regression statistical models, we want to look 
at time factors like years (linear, quadratic, and 
cubic effects), space factors like longitudes 
(denoted as long) and latitudes (denoted as lat) 
of each climate station, and other factors like 
the altitudes (denoted as alt) of each climate 
station.
 
2.2.1 Linear Regression Model
 Let us consider the data presented 

in Section 2.1 related to the annual average 
minimum and maximum temperatures. In the 
statistical analysis of the data set, we have 
adopted the following linear regression model 
for the annual average minimum temperature,
Y1i=β0+bi+β1(lati-avg.lat)+β2(longi-avg.

long)+β3(alzi-avg.alt)+β4xi+β5xi2+β6xi3+ϵi,
(i=1,…,3467)                  (1)
where Y1i is the annual average minimum 

temperature; xi = year-1883; bi is a latent or 
random factor assumed as a random variable 
with a normal distribution N(0,σb2) and ϵi is a 
error term assumed to be independent identically 
distributed with a normal distribution N(0,σ2). 
The equation (1) defines a latente variable 
model, that is, a statistical model that contains 
latent, or unobserved variables (effects not 
measured by the covariate effects of latitude, 

longitude, altitude and the temporal effects 
of years). Equation (1) connects the observed 
and latent variables using a linear model where 
the outcome (observed) dependent variable is 
assumed to be a continuous random variable.  
On other hand, for the annual average maximum 
temperatures, we have adopted the following 
linear regression model,
Y2i=β0+bi+β1(lati-avg.lat)+β2(longi-avg.

long)+β3 (alti-avg.alt)+β4xi+β5xi2+β6xi3+ϵi,                  
(i=1,…,3959)                         (2)

where Y2i  is the annual average maximum 
temperature. In both models, we included a 
polynomial terms to capture possible effects 
of linearity, quadratic and cubic effects of year. 
A quadratic term or cubic term transforms a 
linear regression model into a curve. Since the 
regression model has the squared and cubic 
year as covariates, and not transformations on 
the regression coefficient, the model remains 
a linear regression model (Draper and Smith, 
1998; Seber, 2015). The presence of a quadratic 
term in the model creates a U-shaped curve or 
an inverted U, as seen in the graphs presented 
in Figure 2. A cubic term has two distinct parts: 
one facing up and one facing down, that is, the 
curve go down, back up and back again.
In both hierarchical Bayesian models 

(model (1) and model (2)), assuming a 
normal probability distribution for the 
random effects, we have  a conjugated prior 
distribution providing a posterior distribution 
in its closed form. The use of conjugated prior 
distributions also is usually assumed for other 
hierarchical Bayesian models in presence of 
latent non-observed factors considering other 
distributions, such as, binomial data, where the 
conjugated prior distribution for the random 
effects is a Beta distribution, thus obtaining 
the Beta-Binomial model. In the same way, if 
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the data are results from a Poisson distribution, 
the prior conjugate distribution for the random 
effects is a Gamma distribution, obtaining 
the Gamma-Poisson model. Furthermore, the 
literature presents many studies analyzing the 
impact of other probability distributions for the 
random effects (Bell et.al, 2019), showing that 
the results (parameter estimates and standard 
errors) are nearly identical when assuming 
a normal distribution. In addition, we have 
great computational advantage having a closed 
posterior distribution when we use the normal 
distribution for both random effects, b_i and 
ϵ_i in (1) and (2). In our study assuming the 
modeling structure based on random effects 
with normal distribution, we obtained a good fit 
of the model for the data as observed in Figure 
4 presented in the application section. The 
assumption of normality for the random errors 
usually is verified from residual plots.

2.2.2 Polynomial Regression Model
As second approach, we have adopted only 

the covariate x=year (114 years from 1883 to 
2003). In this case, we assume the following 
polynomial regression model for the annual 
average minimum temperature,
Y1i=β0+bi+β1xi+β2xi2+ β3 xi3+ϵi, 
(i=1,…,114)                         (3)
and, for annual average maximum temperatures 

(covariate x = year with 108 years from 1894 
to 2003), the following polynomial regression 
model,
Y2i=β0+bi+β1xi+β2xi2+ β3xi3+ϵi,
 (i=1,…,108)                         (4)

2.2.3 Approximate Hierarchical Bayesian 
Inference
In this subsection, we address the problem 

of estimating and making inferences from 
proposed models under a fully Bayesian 

perspective. In this way, assuming a Hierarchical 
Bayesian framework, we have adopted weakly-
informative Normal prior distributions for 
the vector  β = (β0,…,βp) (p is the number of 
covariates) of regression parameters, that is
β  Nk (0,1k)
where 1k is identity matrix of size k. As for 

parameters ζ=1/σ2 and ζb=1/σb2  , we have 
adopted a Gamma  prior distribution with 
both hyperparameters equal to 0.01. We 
further assume prior independence among all 
parameters. From the Bayesian point of view, 
inferences for the elements of β can be derived 
from their marginal posterior distribution. 
Here, we have opted to use a suitable iterative 
procedure to draw pseudo-random samples from 
the approximate posterior density in order to 
make inferences for β. Thus, in order to generate 
N pseudo-random values for each element of β, 
we have adopted the MWG algorithm in which 
a total of  N=110,000 pseudo-random values 
from the approximate  posterior distribution of 
β were obtained. After generating the values, 
the first 10,000 samples were discarded (burn-
in period). Then one out of every 100 generated 
values was kept, resulting in sequences of size 
B=1,000 for each element of  β. Finally, trace 
plots were used to assess the stationarity of the 
obtained chains.

3 Results and Discussion
3.1 Results
In this subsection, we address the results 

of the proposed methodology for the annual 
average minimum temperatures and maximum 
temperature data for each country (211 
Kazakhstan, 213 Kyrgyzstan, 227- Tajikistan, 
229 Turkmenistan, and 231 Uzbekistan). As a 
preliminary analysis, we considered an ANOVA 
model and verified that the means for both 
responses are statistically different for each 
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country (p-value < 0.05). Figure 3 shows the 
95% confidence intervals for the minimum and 
maximum temperature values in each region.
Table 1 presents the posterior parameter 

estimates and the 95% Credible Intervals (CIs) 
for annual average minimum temperatures 
based on the fitted models. From the displayed 
results, we can notice that the CI of parameters 
β_j,j=2,…,6 of model 1 do not contain the value 
zero, which constitute longitude, altidude, x 
(linear effect), x^2 (quadratic effect) and x^3 
(cubic effect) as relevant covariates to explain 

Figure 3: 95% confidence intervals for the temperature means (211-Kazakhstan, 213-  
Kyrgyzstan, 227-Tadjikistan, 229-Turkmenistan and 231-Uzbekistan).

Table 1: Posterior parameter estimates and 95% credible intervals –
Annual average minimum temperatures

part of the response' variability. Also, since 
altitude has a negative Monte Carlo Bayesian 
estimator for the regression parameter β_3 
(-0.1131), we conclude that the annual average 
minimum temperature decreases with altitude, 
an expected result. Moreover, for model given 
by (3), we can observe that the factor year 
shows significant effect on the response average 
minimum temperature in terms of quadratic 
and cubic effects since zero is not included in 
the 95% credible intervals for the regression 
parameters β_2 and β_3.

Model Parameter Mean Std. Dev.
95% CI

Lower Upper

Eq.(1)

β_0 45.400 0.997 43.660 47.350
β_1 1.107 0.683 -0.316 2.717
β_2 -0.675 0.398 -1.536 0.011
β_3 -0.113 0.002 -0.117 0.107
β_4 -85.080 0.043 -85.140 84.980
β_5 2.025 0.001 2.022 2.028
β_6 -0.011 0.0002 -0.011 0.011

ζ 0.859 0.908 0.036 3.332
ζ_b < 0.0001 < 0.0001 < 0.0001 < 0.0001

Eq.(3)

β_0 8.123 0.728 6.689 9.511
β_1 0.010 0.046 -0.080 0.105
β_2 -0.002 0.001 -0.0044 -0.001
β_3 < 0.0001 < 0.0001 < 0.0001 < 0.0001

ζ 0.599 0.349 0.323 1.416
ζ_b 0.912 0.303 0.427 1.600
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Table 2 presents the posterior parameter 
estimates and the 95% Credible Intervals (CIs) 
for annual average maximum temperatures 
based on the fitted models. From the displayed 
results, we can notice using model (2), except 
for β_2, the significant effects are the same as 
the average minimum temperatures to explain 
part of the response' variability. In addition, for 

Table 2: Posterior parameter estimates and 95% credible intervals –
Annual average maximum temperatures

Model Parameter Mean Std. Dev.
95% CI

Lower Upper

Eq.(2)

β_0 65.180 0.916 63.190 66.850
β_1 1.164 0.689 -0.285 2.245
β_2 -0.213 0.327 -1.005 0.251
β_3 -0.077 0.001 -0.080 -0.074
β_4 -93.200 0.050 -93.290 -93.110
β_5 2.340 0.000 2.339 2.341
β_6 -0.014 0.0001 -0.014 -0.014

ζ 1.185 1.002 0.195 3.990
ζ_b < 0.0001 < 0.0001 < 0.0001 < 0.0001

Eq.(4)

β_0 28.650 2.302 24.180 33.050
β_1 -0.348 0.134 -0.593 -0.078
β_2 0.001 0.002 -0.002 0.005
β_3 < 0.0001 < 0.0001 < 0.0001 < 0.0001

ζ 0.334 0.172 0.164 0.688
ζ_b 0.941 0.329 0.403 1.686

model given by (4), we can observe that the 
linear and cubic effects are significant since zero 
is not included in the 95% credible intervals for 
the regression parameters β_1  and β_3.

Figure 4 shows the minimum and maximum 
mean temperatures and the estimated means 
versus years fitted by models (3) and (4)

Figure 4: Average minimum and maximum temperatures and estimated 
means versus years.
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Figure 5 illustrates the simulated envelope 
for the residuals assuming the polynomial 
regression models (Equations (3) and (4)) for 
each response which suggests that the model 
fit is adequate since all the estimated residuals 
are lying within the simulated envelope, which 
also indicates that there is no severe violation of 
model assumptions. Additionally, one can notice 
that the proposed models fits considerably well 
since the estimated residuals are close to the 
dashed median line.

The needed assumptions (normality, constant 
variance and non-correlated) for the errors in 
the proposed regression models were verified 
by residual plots. Figure 6 shows the residual 
plots considering models (1) and (2). 
One of the findings from this study is that 

Figure 5: Normal plot with simulated envelope for the residuals for 
annual average minimum and maximum temperatures (left-panel: 

Model (3); right-panel: Model (4).

Figure 6: Residual plots (minimum and maximum temperatures) for the proposed              
models (left-panel: Model (1); right-panel: Model (2)).

from the year close to 1970 there is a consistent 
increasing of the annual average temperatures 
(minimum and maximum) in the Central Asia 
region. Hu et al. (2014) corroborate this result, 
pointing out that despite the lack of accurate 
climate data, multiple data sets show regional 
temperature increases from 1979 to 2011. 
They also discovered that the rate is higher 
in recent years than in the early years of the 
follow-up period, with a greater increase in 
surface temperature in the spring season and 
accelerated warming in Central Asia compared 
to other regions of the world (Brohan et al., 
2006; Smith and Reynolds, 2005).
Another finding from this study is that the 

high temperature variability may cause changes 
in vegetation and agriculture in the Central Asia 
region. Propastin et al. (2008) looked at annual 
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and seasonal plant activities in Central Asia 
using time series models for the Normalized 
Difference Vegetation Index (NDVI) from 
the NOAA/AAVHRR data set. They found 
that temperature change is the only thing 
that affects the trend in NDVI in the spring, 
since temperature is a measure of the energy 
that plants can use to grow. Yin et al. (2016) 
demonstrated a significant increasing trend in 
the annual normalized difference vegetation 
index (NDVI) between 1982 and 1994, followed 
by a decreasing trend since 1994. The study's 
findings, which show significant fluctuations 
in minimum and maximum temperatures as 
well as an upward trend towards the end of 
the follow-up period, validate these results and 
have implications for the region's vegetation. In 
parallel, Chen and Guo (2012) fitted a statistical 
model to quantify the impact of temperature 
variations on pasture productivity during 
1982–2015, concluding that climate change 
had a severe influence on pasture productivity 
in Central Asia since the year 1980. According 
to Reyer et al. (2017), climate changes have a 
negative impact on the availability of water in 
the Central Asia region, which could potentially 
lead to a decrease in crop yields and pasture 
productivity.
Our findings also showed that the annual 

average minimum temperatures in Central Asia 
are increasing in all countries (Figure 4) at the 
end of the follow-up period (close to the year 
2003). Despite significant data variability, we 
observe this trend. The same happens for the 
annual average maximum temperatures (Figure 
4). It is important to point out that climate data 
from different climate stations, especially in 
third-world countries, usually present many 
missing data or outliers in the reported data 
sets, sometimes due to errors. This typically 
poses a challenge in obtaining accurate results 

from climate data analysis. Moreover, the 
factors longitude (long) and altitude (alt) 
have significant effects on the annual average 
minimum temperatures; that is, the annual 
average minimum temperatures depend on the 
spatial location of each climate station. The 
spatial factors longitude (long) and altitude (alt) 
do not show significant effects on the annual 
average maximum temperatures; that is, the 
annual average maximum temperature does not 
depend on the spatial location of each climate 
station. Also, considering the combined data of 
the five countries, we observe that from the year 
close to 1970 there is a consistent increasing of 
the annual average temperatures (minimum and 
maximum), despite the substantial heterogeneity 
between the annual average temperatures of the 
five countries in Central Asia (Figure 4). 
Overall, this study confirms the findings of 

numerous recently published papers in the 
literature: the warming effects of climate 
change observed in recent decades are the 
primary cause of the large variations in average 
annual maximum temperatures in Central Asia. 
Asia is a large continent, including parts near 
the polar regions and parts near the equator, 
leading to large differences in climate. Other 
potential factors, such as the proximity of some 
parts of the Asia continent to seas and oceans, 
as well as the presence of various landforms, 
also contribute to this climatic behavior. This 
phenomenon is evident in Central Asia, where 
the impact of climate change is particularly 
severe. Other regions of the world, such as 
the arid region of northeastern South America, 
particularly in Brazil, are also experiencing 
significant effects of climate change due to 
human activities such as deforestation, the 
establishment of large farms for cattle raising, 
and agricultural production. These activities 
have resulted in increasing annual maximum 
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and minimum temperatures in recent decades, 
leading to catastrophic economic consequences 
(Soares et al., 2021).

4 Conclusion
Polynomial and linear regression approaches 

typically involve choosing a model among many 
existing linear and non-linear formulations, 
which can be a burden in many applications. 
In some situations, adding a random factor 
could be more precise to obtain the inferences 
of interest; however, most numerical iterative 
methods for model fitting strongly depend on 
choosing precise initial values. In this sense, we 
aimed to introduce a simple regression model 
that incorporates a latent variable, a linear, a 
quadratic, and a cubic effect as an alternative 
to many existing linear time trends techniques 
in the literature. We obtained approximate 
posterior inferences for the model parameters 
using a fully hierarchical Bayesian approach 
based on the MwG and weakly informative 
priors as inference methods. The findings 
demonstrated great accuracy in identifying 
important factors affecting climate change 
(such as time (year), altitude, and spatial 
factors) and predicting average temperatures 
in the future. Furthermore, the obtained results 
align with numerous other studies in the 
literature and hold potential for application in 
other arid regions of the world, particularly 
the northeast of Brazil, which has experienced 
catastrophic climate change effects in recent 
years. In conclusion, the results obtained from 
this study may be of great interest for authorities 
in the areas of environment, agriculture, 
sanitation, and irrigation in the countries of the 
Central Asia region to plan public policies for 
agricultural plantations and the construction of 
water deposits, among many challenges that the 
planet will face in the coming decades.
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Country Clima Station

Kazakhstan
Almaty, Balhash, Big Almaty Lake, Karaganda, Kegen, Kugaly, Mynzhilky, 

Narynkol, Podgornoe, Sarydzhas, Semipalatinsk, Verhniy, Gorelnik.

Kyrgyzstan
Aktash, Angren, Arpa, Atbashi, Baityk, Bishkek, Chatirkul, Daraut-Kurgan, 

Dolon, Dzhergetal, Gulcha, Haidarkan, Isfana, Kochkorka, Naryn, Przhevalsk, 
Rybach'e, Sarytash, Susamyr, Tien-Shan, Tyuya-ashu, Southern, Ustie r.Ters.

Tadjikistan

Anzobsky pereval.Bulunkul, Bustonabad, Dehavz,  Dushanbe, Dzhavshangoz, 
Fedchenko Glacier, Garm, Gushari, Haburabad, Haramkul, Horog, Hovaling, 
Humrogi, Irht, Ishkashim, Iskanderkul, Kalai-Khumb, Karakul, Kulyab, Kurgan-
tyube, Leninabad, Lyairun, Lyakhsh, Madrushkent, Muminabad, Murgab, Rushan, 
Sangiston, Sanglok,  Shahristanskiy Pereval,  Shaimak, Tavildara, Uratyube.

Turkmenistan
Ashgabat, Bairam-ali, Chardzhou, Gasan-kuli, Kizyl-arvat, Krasnovodsk, 

Kushka, Serahs.

Uzbekistan
Akrabat, Fergana, Kizilcha, Minchukur, Oigaing, Pskem, Samarkand , Sanzar, 

Severtsova Glacier, Tamdy, Tashkent, Termez.

Appendix 1
Climate Stations in each country (minimum temperatures) in Central Asia (211-Kazakhstan, 

213-Kyrgyzstan, 227-Tadjikistan, 229-Turkmenistan and 231-Uzbekistan)
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Appendix 2
Climate Stations in each country (maximum temperatures) in Central Asia (211 Kazakhstan, 

213-Kyrgyzstan, 227-Tadjikistan, and 231-Uzbekistan)

Country Clima Station

Kazakhstan
Almaty, Big Almaty Lake, Chilik, Issyk, Kegen', Kugaly, Mynzhilky, Narynkol, 

Podgornoe, Sarydzhas, Ust'-Gorelnik, Verhniy Gorelnik.  

Kyrgyzstan
Aktash, Angren, Arpa, Atbashi, Baityk, Bishkek, Chatirkul, Daraut-Kurgan, 

Dolon, Dzhergetal, Gulcha, Haidarkan, Isfana, Kochkorka, Naryn, Przhevalsk, 
Rybach'e, Sarytash, Susamyr, Tien-Shan, Tyuya-ashu Southern, Ustie r.Ters.

Tadjikistan

Anzobsky pereval, Ayvadzh, Bulunkul, Bustonabad, Dushanbe, Dzhavshangoz, 
Faizabad, Fedchenko Glacier, Garm, Gushari, Haburabad, Haramkul, Horog, 
Hovaling,  Humrogi, Irht, Isfara, Ishkashim, Iskanderkul, Kalai-Khumb, 
Karakul, Komsomolabad,  Kulyab, Kurgan-tyube,  Leninabad, Lyairun, 
Lyakhsh, Madrushkent, Muminabad, Murgab,  Obigarm, Parhar, Pendjikent, 
Pyandzh(Kirovobad),  Rushan, Sangiston, Sanglok, Shahrinau,  Shahristanskiy 
Pereval, Shaimak, Tavildara, Uratyube.

Uzbekistan

Ablyk, Akrabat, Amankutan, Baisun, Bogarnoe, Charvak,  Dehkanabad, 
Denau, Dukant, Dzhizak, Fedchenko, Fergana, Gallyaaral, Hiva, Kassansai, 
Kizilcha, Kokand, Minchukur, Namangan,  Naugarzan,  Nurata, Oigaing, Pskem, 
Samarkand, Sanzar,   Severtsova, Glacier,  Tamdy, Tashkent, Termez, Urgench.
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